Weather Shield Breda

Agenda

Introduction	(3)
Data Analysis/Preparation	4
LSTM Model	9
Legal Compliance	11
Deployment	(13)

Introduction

The Weather Shield Breda Project enhances Breda city safety through predictive analytics.

Increase safety in Breda by predicting the severity of incidents based on weather conditions and incident history.

Using data-driven decision-making, the Weather Shield Breda Project aims to keep all residents of Breda safer.

Key Features:

- Real-time Updates: Provide real-time updates for citizens of Breda.
- Danger Areas Monitoring: Identify and monitor previously identified danger areas to determine if they are at risk on any given day based on current weather conditions.

Data Analysis and Preparation

Data Collection

We used two main sources to build our dataset for the predictive model:

- Weather Data: Including temperature, relative humidity, precipitation, wind speed and sunshine duration.
- ANWB Data: Records of incidents in Breda, provided by ANWB.

Data Preprocessing Steps

Loading Data:

- Established a connection to a PostgreSQL database.
- Retrieved column names and sample data from the weather table.

Handling Missing Values:

- Identified and removed columns with excessive missing values.
- Created a cleaned weather table without the visibility column.

Standardizing Data:

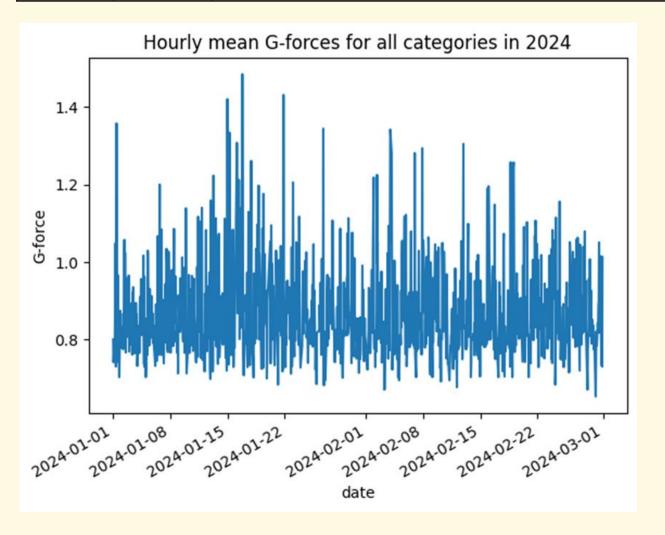
 Converted values in the is_day column to integers (0 and 1).

Detecting and Handling Outliers:

- Examined numerical columns for extreme values.
- Removed top 400 outliers in the ANWB data.

Loading and Cleaning ANWB Data:

- Loaded the ANWB incident data.
- Created a simplified view for easier analysis.

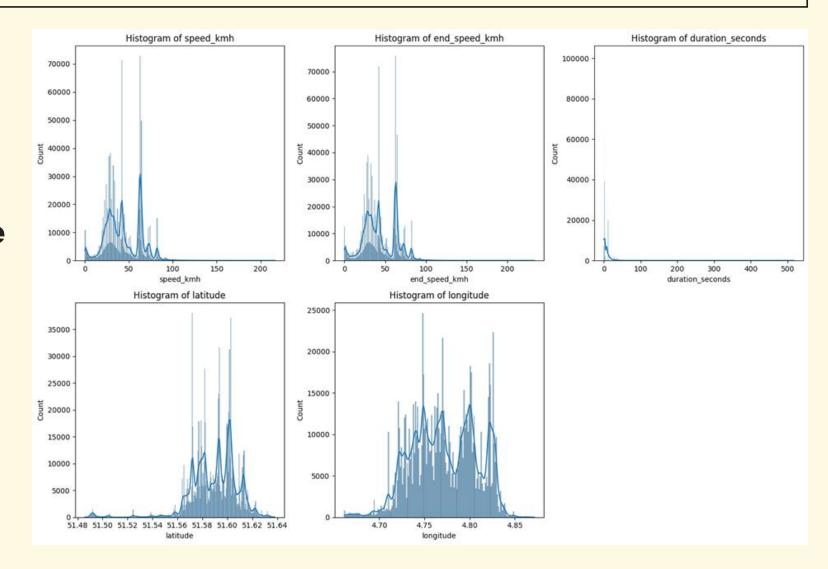

Data Integration:

 Joined weather and ANWB data to analyze relationships between weather conditions and driving incidents.

Visualizations and Insights

Hourly Mean G-Forces:

Plotted to visualize driving behavior across different times of the day.



Visualizations and Insights

Outlier Analysis:

Visualized distributions to detect and handle outliers effectively.

LSTM model

Our project uses an LSTM (Long Short-Term Memory) model to predict incident severity based on weather data.

Model: "sequential_21"

Layer (type)	Output Shape	Param #
conv1d_18 (Conv1D)	(None, 24, 64)	1,664
bidirectional_17 (Bidirectional)	(None, 24, 128)	66,048
bidirectional_18 (Bidirectional)	(None, 64)	41,216
dropout_1 (Dropout)	(None, 64)	0
dense_44 (Dense)	(None, 100)	6,500
dense_45 (Dense)	(None, 100)	10,100
dense_46 (Dense)	(None, 4)	404

Total params: 377,798 (1.44 MB)

Trainable params: 125,932 (491.92 KB)

Non-trainable params: 0 (0.00 B)

Optimizer params: 251,866 (983.86 KB)

10 LSTM model

- Convolutional Layer (Conv1D): Extracts local features from the time-series data.
- Bidirectional LSTM Layers: These layers capture patterns in the data by processing it in both forward and backward directions.
- Dropout Layer: Applied to prevent overfitting.
- Dense Layers: Process the extracted features and make the final predictions.

K 1 LSTM model

Results of the model classes(((

	precision	recall	f1-score	support	
0 1	0.86 0.96	0.96 0.90	0.91 0.93	8412 28058	
2	0.86 0.83	0.90 0.96	0.88	8464 2514	
3	0.03	0.96		2514	
accuracy			0.92	47448	
macro avg	0.88	0.93	0.90	47448	
weighted avg	0.92	0.92	0.92	47448	

に 12 Legal Compliance

Risk Management (Article 9)

We reduce potential risks our AI system might have, making sure it gives safe advice.

Data Quality (Article 10)

We use accurate and unbiased data to train our Al. This ensures our predictions are reliable.

Technical Documentation (Article 11)

We keep detailed records of how we built and tested the Al system. This helps us improve it over time.

Record-Keeping (Article 12)

We keep detailed records of the Al's design and updates to ensure compliance and easy tracking.

Legal Compliance

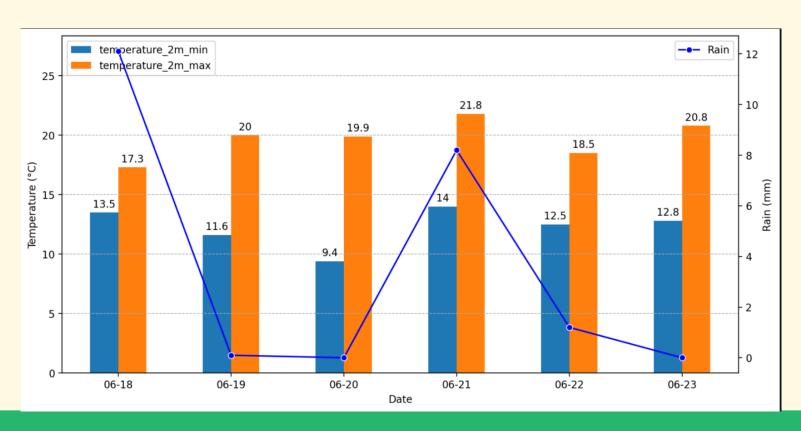
Transparency (Article 13)

We explain clearly to users what the Al can and cannot do, helping them use it correctly.

Human Oversight (Article 14)

Human intervention mechanisms correct any Al errors, ensuring safe and accurate advice.

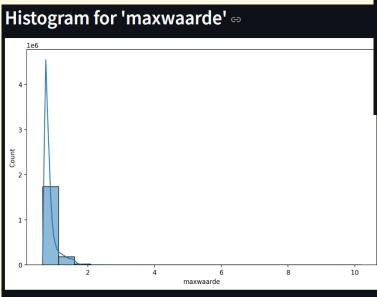
By following these rules, we ensure the Weather Shield Al system is safe, reliable, and fair, meeting EU legal standards.

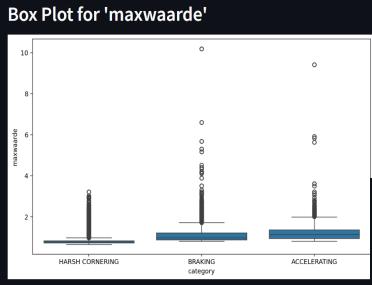


R Deployment

The website includes weather forecast for the next 5 days

Filter Data Select Date Range 2018/01/01 - 2024/02/29 Select Category All Showing data for category: All maxwaarde temperature_2m relative_humidity_2m precipitation wind_speed_10m sunshine_dura 1,947,628 1,947,628 1,947,628 1,947,628 1,947,628 1,947 count 0.8653 74.1551 0.1043 15.3518 1,749.7 12.4108 0.2118 6.8626 16.4383 0.369 7.4799 1,716.€ 0.6437 -9.563 19.1184 0 0 25% 0.7339 7.387 62.5031 0 9.7267 50% 0.8031 11.937 77.2955 0 14.3459 1,350.1 0.9045 17.487 87.9628 0 19.8131 10.1823 37.437 100 15.7 59.509 max



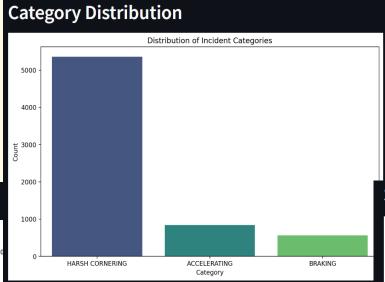


R Deployment

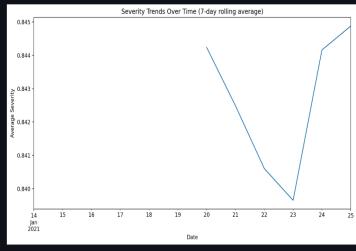
Based on the selected time range of weather data, users can view relevant diagrams.

T Deployment

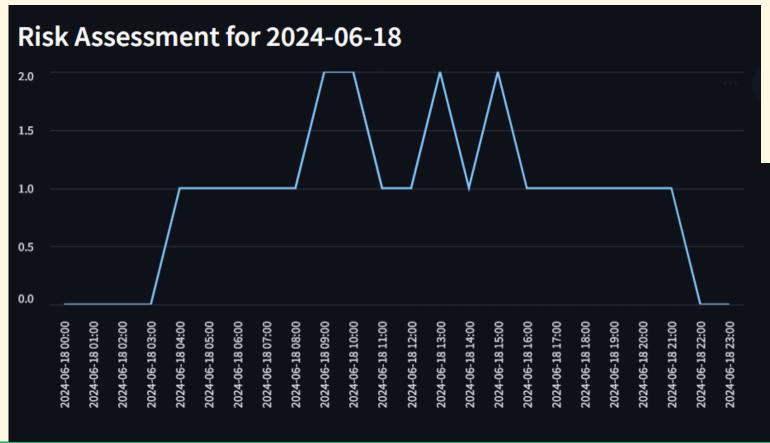
18


BRAKING

category


ACCELERATING

111


HARSH CORNERING

Severity Trends Over Time

The model predicts risk assessment for every hour.

Current Status for 2024-06-18 16:00: <u>Normal level of Risk [0, 1]</u>

Predictions DataFrame

	Prediction
2024-06-20 05:00	
2024-06-20 06:00	
2024-06-20 07:00	
2024-06-20 08:00	
2024-06-20 09:00	
2024-06-20 10:00	
2024-06-20 11:00	
2024-06-20 12:00	
2024-06-20 13:00	
2024-06-20 14:00	
2024-06-20 15:00	

Current Status for 2024-06-18 15:00: <u>Above</u> average level of Risk [2]

At-risk locations with the most incidents and Severity above 2 🖘

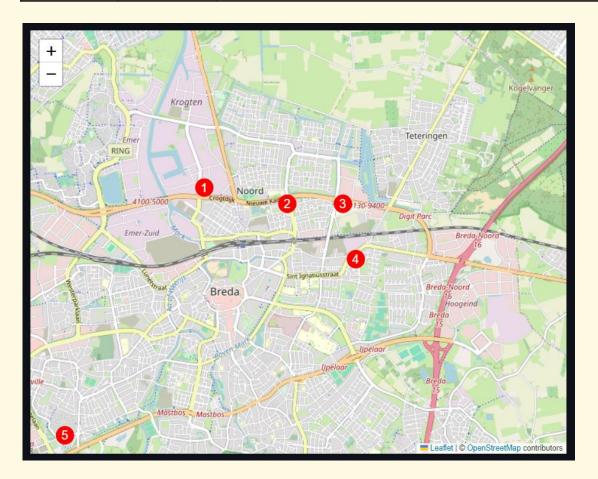
Road name: Konijnenberg, **Incident count:** 3552, **Avg severity:** 2.13, Most common incident: Harsh Accelerating

Road name: Nieuwe Kadijk, **Incident count:** 2908, **Avg severity:** 2.02, Most common incident: Harsh Accelerating

Road name: Nieuwe Kadijk, **Incident count:** 2866, **Avg severity:** 2.02, Most common incident: Harsh Cornering

Road name: Teteringsedijk, **Incident count:** 2620, **Avg severity:** 2.00, Most common incident: Harsh Accelerating

Road name: Vogelschoot, **Incident count:** 2904, **Avg severity:** 2.00, Most common incident: Harsh Cornering


Road name: Kapelstraat, **Incident count:** 2996, **Avg severity:** 2.00, Most common incident: Harsh Cornering

When the model detects a high risk, the website highlights high-risk areas within the city of Breda.

21 Deployment

It also highlights this high risk areas on the map.

Our Team

Monika Stangenberg


Bartosz Kudyba

Kiril Baharev

Stijn van der Pas

